
Approximate Logic Synthesis by Genetic Algorithm with an Error
Rate Guarantee

Chun-Ting Lee, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang

ABSTRACT
Approximate computing is an emerging design technique for

error-tolerant applications, which may improve circuit area, delay,
or power consumption by trading off a circuit’s correctness. In this
paper, we propose a novel approximate logic synthesis approach
based on genetic algorithm targeting at depth minimization with an
error rate guarantee. We conduct experiments on a set of IWLS 2005
and MCNC benchmarks. The experimental results demonstrate that
the depth can be reduced by up to 50%, and 22% on average under
a 5% error rate constraint. As compared with the state-of-the-art
method, our approach can achieve an average of 159% more depth
reduction under the same 5% error rate constraint.

ACM Reference Format:
Chun-Ting Lee, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang. 2023.
Approximate Logic Synthesis by Genetic Algorithm with an Error Rate
Guarantee . In 28th Asia and South Pacific Design Automation Conference
(ASPDAC ’23), January 16–19, 2023, Tokyo, Japan. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3566097.3567890

1 INTRODUCTION
As the size of transistors goes into nano-scale, energy efficiency

has become amajor challenge in VLSI design. To deal with this prob-
lem, designers propose to minimize the circuit size while preserving
its functionality as much as possible. Meanwhile, many applica-
tions used today, such as image processing and machine learning,
exhibit the error-tolerant property. With this trend, approximate
computing [4] has been proposed as a novel energy-efficient design
paradigm recently. Approximate computing sacrifices the accuracy
to achieve a smaller area, delay, or power consumption of the re-
sultant circuits. When the introduced errors are carefully managed,
the quality of a circuit is nearly unaffected, while the area, depth
and power consumption can be reduced significantly.
Many previous works [1][8][9][10][11][12][13][14][17][18][20]

[21][23] have demonstrated the effectiveness of approximate com-
puting, including manual design approximation and approximate
logic synthesis. Manual design approximation focuses on arithmetic
circuits, such as adders [8][12][23] and multipliers [9][10][13]. Ap-
proximate logic synthesis aims to synthesize an approximate circuit
satisfying the given error constraints [1][11][14][17][18][20][21].
Due to the larger design space exploration of approximate logic

synthesis, there exists a growing number of works in this field. In
[11], Lai et al. proposed an approximate logic synthesis method for
threshold logic circuits. In [20], Venkataramani et al. proposed to
identify signal pairs in a circuit that have higher probabilities to

This work is supported in part by the National Science and Technology Council of
Taiwan underMOST 109-2221-E-007-082-MY2, MOST 109-2221-E-155-047-MY2, MOST
110-2224-E-007-007, MOST 111-2218-E-007-010, MOST 111-2221-E-007-121, and MOST
111-2221-E-011-137-MY3.
C.-T. Lee, Y.-T. Li, and C.-Y. Wang are with the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 300044, R.O.C. Y.-C. Chen is with
the Department of Electrical Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan 106335, R.O.C.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567890

be the same value and substitute one with the other. In [17], Su
et al. proposed a batch error estimation method based on Monte
Carlo simulation to derive better approximate circuits. Recently, to
improve efficiency, Meng et al. proposed an efficient simulation-
based approximate resubstitution with the approximate care set to
produce approximate circuits [14]. Tam et al. proposed an efficient
node merging approach, which merged two nodes with the similar
functionality [18]. However, these previous works only selected a
local approximate change in each round and focused on area mini-
mization. Circuit delay is another important issue in logic circuits.
If we reduce the circuit depth, the timing performance will be im-
proved. Thus, in this work, we propose an evolutionary approach
– genetic algorithm, for approximate logic synthesis targeting at
searching global approximation and having depth reduction un-
der a given error rate constraint, which is the first work for depth
minimization.
Our approach consists of four phases. In the first phase, we sim-

plify the original circuit by replacing nodes with constant values
(0 or 1) according to their functional similarities to 0 or 1. In the
second phase, we partition the simplified circuit into many sub-
circuits with a subcircuit size bound. Next, we apply the designed
genetic algorithm on each subcircuit to produce a set of subcir-
cuit candidates that have smaller depth and area but with similar
functionalities. In the last phase, we combine the candidates into
a complete approximate circuit satisfying the required error rate
constraint. Experimental results show that the proposed approach
reduces much more circuit depth than the state-of-the-art [18]
under the same error rate constraint.
The main contributions of this work are twofold:

1) We propose an evolutionary approach to approximate cir-
cuits based on genetic algorithm, which is the first work
targeting at depth minimization of approximate logic syn-
thesis.

2) The experimental results demonstrate that our approach
achieves an average of 159% more depth reduction as com-
pared with the state-of-the-art under a 5% error rate con-
straint.

2 PRELIMINARIES
2.1 Error Metrics
To evaluate the error resulted from an approximate circuit, sev-

eral error metrics have been used, such as error magnitude, error
distance, and error rate. Error magnitude [16] refers to the maxi-
mal numerical deviation of the outputs in an approximate circuit.
Error distance [12] refers to the arithmetic distance between the
outputs of an approximate circuit and the original one with the
same input pattern. Error rate [2][8][9][11][18] refers to the ratio
of the number of input patterns that produce incorrect outputs in
an approximate circuit to the total number of input patterns. In this
work, we adopt the error rate as the error metric since it is the most
commonly used error metric and more appropriate to our work.

2.2 And-Inverter-Graphs
The circuits this work deals with are represented in And-Inverter-

Graphs (AIGs) [15]. In an AIG, each node is either a primary input
(PI) or a two-input AND gate, and an edge may contain a dot
indicating an inverter. Different primitive gates represented in an
AIG are shown in Fig. 1. XOR and XNOR gates contain three AND
gates, while the other gates contain only one AND gate.

146

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3566097.3567890&domain=pdf&date_stamp=2023-01-31

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chun-Ting Lee, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang

Figure 1: The gate expression of primitive gates in an AIG.

2.3 Genetic Algorithm
Genetic Algorithm [5] is an evolutionary method inspired by

biological evolutions. It emulates the biological evolution process
to search the global optimal solution. Genetic operations, such as
crossover and mutation, are used to generate an offspring in each
generation. The crossover operates on two individuals and gener-
ates an offspring that inherits their traits. The mutation increases
diversities by introducing new solutions. The generated offsprings
are evaluated by a fitness function. If the fitness value of an off-
spring is high, it will be selected as a parent, which will be selected
to generate offsprings in the next generation with a higher probabil-
ity. Thus, the basis of genetic algorithm is an evolutionary process
that evolves solutions for achieving the global optimum.
There exist some previous works that use genetic algorithms in

the optimization of logic circuits [6][19]. The work [6] proposed to
use genetic algorithms to minimize circuit area while preserving
the circuit’s functionality. In approximate computing, the work [19]
proposed to use Cartesian Genetic Programming, a special form of
genetic algorithm, to produce an approximate circuit. However, the
benchmarks they targeted are arithmetic circuits and small circuits
with only a few gates. For scalability, our goal is to target at circuits
with different sizes, and relax the accuracy constraint to produce
approximate circuits.

3 PROPOSED APPROACH
In this section, we present the proposed approach, which com-

prises four phases, including node to constant, circuit partitioning,
genetic algorithm design, and subcircuit selection and combination.
Then, we show the overall flow of the proposed approach.

3.1 Node to Constant
The node to constant phase aims at replacing nodes with constant

values (0 or 1). There may exist some nodes in a circuit that have
similar functionality to constant values (0 or 1). If these nodes are
replaced by 0 or 1, the circuit can be simplified with a very small
error. Thus, we set a probability bound 𝑝 , which is a user-specified
parameter, to examine if a node value has a higher probability of
being 0 than 𝑝 . To determine the functional similarity of a node to 0
or 1, we randomly simulate 𝑟 patterns to estimate the 0’s probability

of each node in the circuit. If a node has the probability of
|0 |
𝑟 ≥ 𝑝 ,

we replace the node with a constant 0, and remove the nodes in the
maximum fanout-free cone (MFFC) of the replaced node, where |0|
is the number of patterns causing a node to be 0 after simulating 𝑟

random patterns. If a node has the probability of
|0 |
𝑟 ≤ 1 − 𝑝 , we

replace the node with a constant 1, and remove the nodes in the
MFFC of the replaced node. Note that removing the nodes in the
MFFC may reduce the depth and area simultaneously.
Since there may exist many nodes in the circuit that can be

replaced by 0 or 1, it is important to determine the node order
for examination. Thus, we first compute the size of MFFC of each
node in the circuit, and examine the nodes by their MFFC sizes in a
descending order. To evaluate the accuracy of the simplified circuit,
we use another set of 𝑟 random patterns to estimate the error rate
of the simplified circuit after every replacement. If the error rate
of the simplified circuit is less than 0.5𝜀, we continue examining
nodes in this phase, where 𝜀 is the given error rate constraint of
the resultant approximate circuit. If the remaining nodes in the

Figure 2: An example for labelling nodes in an original sub-
circuit with primitive gates. (a) An original subcircuit repre-
sented in AIG. (b) The used primitive gates.

simplified circuit cannot be replaced by 0 or 1, or the error rate of
the simplified circuit exceeds the error rate constraint, this phase is
terminated and the simplified circuit is returned.

3.2 Circuit Partitioning
After having the simplified circuit from the first phase, we per-

form the circuit partitioning, which aims at dividing the simplified
circuit into many subcircuits with a subcircuit size bound. This is
because the time spent on evaluating a circuit’s error rate decreases
as the size of a circuit shrinks. Kernighan-Lin (KL) algorithm [7]
and Fiduccia-Mattheyses (FM) algorithm [3] are widely used par-
titioning methods in logic circuits. Both algorithms are two-way
partitioning methods aiming for minimizing the cut size between
two subcircuits. However, FM algorithm has a lower computation
complexity. Thus, we adopt FM algorithm as our partitioning engine
in this work.
The basis of FM algorithm is to move one node with the maxi-

mum gain from one side to the other side at a time. We compute
the gain of node 𝑖 , i.e., 𝑔𝑖 , in the circuit by EQ (1).

𝑔𝑖 = 𝑐𝑢𝑡 𝑠𝑖𝑧𝑒 𝑏𝑒 𝑓 𝑜𝑟𝑒 𝑚𝑜𝑣𝑒 − 𝑐𝑢𝑡 𝑠𝑖𝑧𝑒 𝑎𝑓 𝑡𝑒𝑟 𝑚𝑜𝑣𝑒 (1)

When a node 𝑖 is moved across the cut, it will be locked. Then,
we update the gains of the other nodes connected to the node 𝑖 .
The movement continues until all the nodes have been locked,
and we compute the largest partial sum of the gains for actual
movement. This process is repeated until the largest partial sum no
more than 0, which means that there is no room for minimizing the
cut size. Since the FM algorithm is a two-way partitioning algorithm,
we iteratively conduct the algorithm to divide the circuit into a
number of subcircuits satisfying the given conditions of |𝑃𝐼 | ≤ 𝐼
and |𝑛𝑜𝑑𝑒 | ≤ 𝑁 simultaneously, where |𝑃𝐼 | is the number of inputs
in a subcircuit, |𝑛𝑜𝑑𝑒 | is the number of nodes in a subcircuit, and 𝐼 ,
𝑁 are user-specified constraints.

3.3 Genetic Algorithm Design
After obtaining subcircuits by circuit partitioning, we apply the

proposed genetic algorithm on each subcircuit for approximation.
As mentioned in Section 2, genetic algorithm is an evolutionary
method that evolves solutions in every generation to achieve the
global optimum. Since a chromosome is an individual subcircuit
represented by a string of genes in genetic algorithm, we first
label each node in the simplified circuit obtained in the first phase
from the PIs to the POs in the topological ordering with a unique
integer, and label each primitive gate with an alphabet as shown
in Fig. 2. The example in Fig. 2(a) is a subcircuit with labelling on
each node. But we assume that the node with ID 10 is in another
subcircuit. The reason that we use the topological ordering to label
the nodes in the simplified circuit is to avoid the cyclic structures in
the resultant approximate circuit after combination. Circuits with
cyclic structures are uncommon and not allowed in our work. Since
the structures of subcircuits may be varied substantially in this
phase, the order that the ID of a node larger than the IDs of the
nodes within its transitive fanin (TFI) cone is strictly followed.
Fig. 3 shows an example of a chromosome. In this chromosome,

there are eight sets of genes corresponding to the subcircuit in Fig.

147

Approximate Logic Synthesis by Genetic Algorithm with an Error Rate Guarantee ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 3: The chromosome with eight sets of genes that rep-
resents the original subcircuit in Fig. 2(a).

Figure 4: One of the generated initial populations about the
subcircuit of Fig. 2(a). (a) An initial population expressed in
circuit form. (b) An initial population expressed in chromo-
some form.

2(a). A set of genes represents either an internal node or a PO in
the subcircuit. For example, the first set of genes (0, 1, 𝑎) represents
the node with ID 4 in Fig. 2(a), where 0 and 1 refer to the fanins of
the node 4, and 𝑎 refers to the gate type AND in Fig. 2(b). Since a
set of genes in a chromosome contains the necessary information
about the corresponding node in a subcircuit, we can transform
the chromosome into a unique subcircuit after performing genetic
operations.
The initial populations with respect to an original subcircuit are

generated as follows. To generate a number of subcircuit candidates
with similar functionalities and smaller depths than the original
subcircuit, we remove only one internal AND node and replace it
with one of its fanin nodes at a time. Meanwhile, for each PO in
the transitive fanout (TFO) cone of the removed node, we change
its gate type to every other primitive gate.
We use an example to demonstrate the process of the initial

population generation. One of the generated initial populations
about the subcircuit of Fig. 2(a) is shown in Fig. 4. In Fig. 4(a), the
node 7 is removed and replaced by its fanin node of ID 2. Moreover,
the gate type of the PO (labelled with ID 12) is changed to NOR
gate. The chromosome in Fig. 4(b) reflects this change, i.e., the last
set of genes (11, 7, 𝑎) is changed to (11, 2, 𝑒). The total number
of generated initial populations about the subcircuit of Fig. 2(a) is
5× 2× 6 = 60 since there are five internal AND nodes with two
fanin nodes, and six primitive two-input gates, 𝑎 ∼ 𝑓 . Note that the
number of the initial populations about a subcircuit depends on the
numbers of AND nodes and POs in the subcircuit. That is, different
subcircuits may have different numbers of the initial populations.
The fitness function, which is constituted by the error rate and

the area of a subcircuit, is used to evaluate the quality of a subcircuit
candidate after performing genetic operations as shown in EQ (2).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑊𝐸 · 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 +𝑊𝐴 · 𝐴𝑟𝑒𝑎𝑅𝑎𝑡𝑖𝑜
(2)

In EQ (2), 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 is the ratio of the number of simulation pat-
terns with incorrect outputs to the total number of simulation
patterns, and 𝐴𝑟𝑒𝑎𝑅𝑎𝑡𝑖𝑜 refers to the ratio of the number of AND
gates in the subcircuit candidate to the number of AND gates in the
original subcircuit. The parameters𝑊𝐸 and𝑊𝐴 in EQ (2) are used
to adjust the weights of 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 and 𝐴𝑟𝑒𝑎𝑅𝑎𝑡𝑖𝑜 , and are deter-
mined by users. The higher fitness value of a subcircuit candidate
represents the better quality.
Note that the reason that we consider the area instead of the

depth in the fitness fuction is as follows. The depth reduction on a
subcircuit does not imply the depth reduction on the approximate

Table 1: An example for computing the error rate of the
subcircuit candidate in Fig. 4(a).

Simplified Original Subcircuit
Circuit Subcircuit Candidate

0123 Number Number Node 12 Node 12
0000 9132 91 0 0
0001 558 6 0 0
0010 451 5 0 0
0011 2519 25 1 0
0100 35546 355 0 0
0101 3104 31 0 0
0110 8690 87 0 0
0111 982 10 0 0
1000 20018 200 0 0
1001 5705 57 0 0
1010 9550 96 0 0
1011 3745 37 1 0
1100 0 0 – –
1101 0 0 – –
1110 0 0 – –
1111 0 0 – –

Figure 5: An example for decoding the chromosome in Fig.
4(b) to obtain the area.

circuit after combination since the maximum path of a subcircuit
does not always overlap with the maximum path of the complete
approximate circuit. On the other hand, the operations we design
in the genetic algorithm mainly change the fanins of the nodes. If
more nodes are removed in each subcircuit, we have higher chances
to obtain the approximate circuit with a smaller depth.
The error rate computation in this phase focuses on the subcir-

cuits obtained after partitioning. When we simulate the originally
simplified circuit, the number of values 0, 1 appearing on the in-
puts of a subcircuit is probably unbalanced due to don’t cares in
the originally simplified circuit. However, if we apply exhaustive
patterns at the inputs of a subcircuit, the input patterns that seldom
appear or even never appear in the simulation of the originally
simplified circuit will be still used to compute the error rate of
the subcircuit, which distorts the error rate computation. To avoid
the difference between the computed error rate and the real error
rate of a subcircuit, we randomly simulate 𝑟 patterns on the sim-
plified circuit and record the values at the inputs of a subcircuit.
Then, 0.01𝑟 input patterns on a subcircuit are extracted as the input
patterns for computing the error rate of the subcircuit candidates
since it is not necessary to simulate a large number of patterns on
a subcircuit.
Table 1 shows an example about the simulation on the subcircuit

candidate of Fig. 4(a). First, we simulate 100,000 random patterns
on the originally simplified circuit for recording the values appear-
ing at the inputs of the subcircuit of Fig. 2(a). In Table 1, Column
2 lists the distribution of the numbers of different patterns that
appears at the inputs (0, 1, 2, 3) of the subcircuit after simulation,
which is quite unbalanced. Then, we extract 1% of these 100,000
patterns, i.e., 1,000, as the input patterns for subcircuit simulation
as listed in Column 3. Columns 4 and 5 list the output values of
the node 12 after simulating the original subcircuit in Fig. 2(a) and
the subcircuit candidate in Fig. 4(a), respectively, with these 1,000
patterns. According to Table 1, the simulation patterns 0011 and
1011 produce incorrect outputs in the subcircuit candidate. Since
the total number of patterns 0011 and 1011 is (25 + 37) = 62, the
error rate of this subcircuit candidate is (25 + 37) / 1000 = 0.062.
On the other hand, to compute the area of a subcircuit candidate,

we decode the corresponding chromosome as follows: Since a set
of genes in the chromosome contains the information about fanin
nodes and the gate type of a node, we can traverse the chromosome
from the genes of the POs to the genes of the PIs to obtain active
nodes, which represent the area of the subcircuit candidate. For
example, we traverse the chromosome in Fig. 4(b) to identify the
active nodes of the subcircuit candidate as shown in Fig. 5. The
nodes 6 and 7 will be excluded since they are not in the TFI cone of

148

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chun-Ting Lee, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang

Figure 6: An example of the crossover on two single-PO par-
ents. (a) The first parent. (b) The second parent. (c) The gen-
erated offspring.

the output node 12. As a result, the obtained area (in terms of gate
count) of the subcircuit candidate is 4, where the inverters (nodes 8
and 11) are ignored in calculating the area in an AIG.
The fitness values of all the generated subcircuit candidates are

computed by the fitness function in EQ (2). We select 𝑘 fitter candi-

dates with higher fitness values as parents in the 𝑛𝑡ℎ generation,
where 𝑘 is a user-specified parameter. Next, the selected parents

will generate offsprings as the population in the (𝑛 + 1)𝑡ℎ gener-
ation by the genetic operations of crossover and mutation. In the
following paragraphs, we will discuss the designs of crossover and
mutation operations used in this work.
The crossover is the main genetic operation, which uses two

parents to generate a new offspring inheriting a part of parents’
genes. Since the number of POs and the IDs of nodes in all the
parents about a subcircuit are identical, we separate the parents
into two categories for the crossover, i.e., the parents with a single
PO and the parents with multiple POs. For the single-PO parents,
the crossover is performed on two parents by inheriting the left half
of a parent’s chromosome and the right half of the other parent’s
chromosome to form an offspring. Fig. 6 demonstrates an example of
the crossover operation on the single-PO parents. The chromosomes
in Figs. 6(a) and 6(b) represent the first parent and the second
one, and both of them have a single PO, node 12. The offspring is
generated by inheriting the first four gene sets (0, 1, 𝑎), (1, 2, 𝑎), (2,
3, 𝑎), (2, 6, 𝑎) from the first parent, and the last four gene sets (4,
ℎ), (8, 5, 𝑎), (9, ℎ), (11, 6, 𝑒) from the second parent as shown in Fig.
6(c).
On the other hand, for the multiple-PO parents, the crossover

is performed as follows. Since the parents have been simulated,
we can compute each PO’s error rate in the two parents. For each
PO with the same ID in the two parents, we select the PO with
better quality from the two parents. Then, the selected PO and the
nodes in its TFI cone are inherited to generate an offspring. For
the PO selection, we give the first priority to the error rate of a
PO and the second priority to the area of a PO’s TFI cone. That is,
when we examine the POs with the same ID in the two parents,
we select the PO with a smaller error rate from the two parents
first. However, if a PO has the same error rate in both parents, we
select the PO with fewer nodes in its TFI cone from the two parents
for depth and area saving. For the other situation, i.e., a PO that is
with the same error rate and the same number of nodes in its TFI
cone in both parents, we randomly select one of the two POs from
the two parents. Nonetheless, when we find that all the POs of the
generated offspring are from only one parent after selecting the last
PO, we randomly select the PO in the other parent for avoiding the
situation that an offspring is identical to a parent. After all the POs
have been selected from the two parents, the selected POs and the
nodes in their TFI cones are inherited to form an offspring. However,
the number of nodes in the offspring may not be identical to that
in a parent. For each missing node, it can be randomly inherited
from one of the parents. Note that a node in the offspring will not
inherit repeatedly even it is in all the TFI cones of different POs.

Figure 7: An example of the crossover on two multiple-PO
parents. (a) The first parent. (b) The second parent. (c) The
generated offspring.pppppppppppp ggggggggggg

Figure 8: An example for mutation on an individual. (a) The
original individual. (b) The mutated individual.

Fig. 7 demonstrates an example of the crossover on the multiple-
PO parents. The chromosome in Figs. 7(a) and 7(b) represent the
first parent and the second one, and both of them have two POs,
nodes 11 and 12. Suppose that the node 11 has a smaller error rate
in the first parent than that in the second parent, and the node 12
has the same error rate in both parents. First, the node 11 in the
first parent is selected. Then, we compute the size of the nodes
in the node 12’s TFI cone of the two parents. The node 12’s TFI
cone in the first parent has 6 nodes, i.e., the nodes 4, 5, 6, 7, 8, and
9, while the node 12’s TFI cone in the second parent has 3 nodes,
i.e., the nodes 5, 6, and 7. Thus, the node 12 in the second parent
is selected. After the selection, the node 11 in the first parent and
the nodes in its TFI cone are inherited, i.e., the gene sets (10, 5, 𝑒),
(9, ℎ), (8, 5, 𝑎), (3, ℎ), (1, 2, 𝑎) of the first parent. For the second PO,
the node 12 in the second parent and the nodes in its TFI cone are
inherited as well, i.e., the gene sets (5, 7, 𝑎), (2, 6, 𝑎), (2, 3, 𝑎) of
the second parent. Next, since the node 4 is not inherited from the
two parents, we randomly inherit the node 4 from one of the two
parents, e.g., the gene set (0, 1, 𝑎) of the second parent, to form a
complete chromosome. The new offspring is shown in Fig. 7(c).
The mutation is the other genetic operation in this work, which

aims to increase diversities of populations by changing some genes
in the chromosome of an individual. The mutation operation of an
individual is designed as follows. An active node, which is identified
by decoding the chromosome for computing the area in an individ-
ual, is randomly selected and its gene is modified to be a mutation.
We consider to mutate the active nodes only since they are the
nodes that may affect the functionality. We randomly change the
gate type of the selected node to the other types with the same
number of fanins, and replace one fanin node by another active
node with a smaller ID than the selected node for avoiding the
cyclic structures.
We use an example to demonstrate the mutation in Fig. 8. The

chromosome in Fig. 8(a) is an individual to be mutated. Assume
that the node 9 is selected for mutation. The gate type of the node 9
is changed from AND gate to NAND gate, i.e., 𝑎 to 𝑑 , and the node
9’s fanin node 5 is replaced by the node 1, as shown in Fig. 8(b).
If we decode the chromosome of Fig. 8(b) for computing its area,
we will find that its area becomes smaller than that of the original
individual. This is because the node 9’s fanin node 5 is replaced
by a PI, the node 1. Note that the node 5 cannot be replaced by
the nodes with IDs larger than the node 9 for avoiding the cyclic
structures.

149

Approximate Logic Synthesis by Genetic Algorithm with an Error Rate Guarantee ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 9: The overall flow of the proposed approach.

For the initial population of a subcircuit, we select 𝑘 individuals
with higher fitness values as parents to participate the crossover and
mutation process. 𝜆𝑐 and 𝜆𝑚 individuals are generated in each gen-
eration by crossover and mutation operations, respectively. Then
these new individuals will be evaluated by the fitness function. In
the next generation, 𝑘 individuals with higher fitness values are
selected as the parents with a higher probability. The process is re-
peated for𝐺 generations, and the subcircuit candidates with higher
fitness values are recorded as good approximate subcircuits for the
succeeding selection and combination process.

3.4 Subcircuit Selection and Combination
After having the approximate subcircuits with higher fitness val-

ues for each subcircuit, we select the best approximate subcircuit
for each subcircuit to form a complete approximate circuit of the
original circuit. We also evaluate the error rate of the complete ap-
proximate circuit in this phase using 𝑟 random patterns. If the error
rate of the complete approximate circuit exceeds the given error
rate constraint 𝜀, we replace some subcircuits by other approximate
subcircuits that have smaller error rates. However, if there is no
approximate subcircuit with a smaller error rate than that of the
subcircuit to be replaced, we select other subcircuits for the replace-
ment. Here comes another question. Which subcircuits should be
replaced for the error rate improvement? We choose subcircuits for
the replacement based on the fitness values in an ascending order,
i.e., replacing an approximate subcircuit with a smaller fitness value
first. To elevate the efficiency of the estimation, we replace five
approximate subcircuits simultaneously if the error rate is larger
than 1.2𝜀; otherwise, we replace one approximate subcircuit at a
time. After the replacement, we obtain a new complete approximate
circuit, and we estimate its error rate again. The process will be iter-
atively conducted until the error rate of the complete approximate
circuit no more than 𝜀. Then, an approximate circuit satisfying the
error rate constraint is returned.

3.5 Overall Flow
The overall flow of the proposed approach is shown in Fig. 9.

The given inputs are an original circuit and an error rate constraint
𝜀. The output is an approximate circuit satisfying the error rate
constraint. First, we simplify the original circuit by replacing nodes
with constant values in the node to constant phase. If the error
rate of the simplified circuit exceeds 0.5𝜀 or none of the remaining
nodes can be replaced, we partition the simplified circuit into many
subcircuits. Next, we apply the designed genetic algorithm on each
subcircuit to produce approximate subcircuits. After having the
approximate subcircuits, we combine them and calculate the error
rate of the complete approximate circuit. If the error rate of the
complete approximate circuit exceeds 𝜀, some approximate subcir-
cuits are replaced by other approximate subcircuits with smaller
error rates; otherwise, the approximate circuit is returned. Note

that our approach is not only suitable on AIGs or other circuits
with two-input gates only, it is also applicable to general circuits.

4 EXPERIMENTAL RESULTS
We implemented the proposed approach in C++ language. The

experiments were conducted on an Intel Xeon E5-2650V2 2.60 GHz
CentOS 6.10 platform with 256GBytes memory. The benchmarks
are from IWLS2005 [25] and MCNC [22]. Each benchmark was
initially transformed into the AIG format by ABC [24].
The user-specified parameters of our approach are heuristically

set as follows. The number of random patterns 𝑟 for the simulation
is set to 100,000. The probability bound 𝑝 in the node to constant
phase is set to 98%. The maximum numbers of inputs and nodes in a
subcircuit are limited to 𝐼 = 10 and𝑁 = 50, respectively, in the circuit
partitioning phase. In one generation of genetic algorithm, the
parent size 𝑘 is set to 10, 𝜆𝑐 and 𝜆𝑚 are set to 10 and 50, respectively.
The number of generations𝐺 is 10. For the parameters in the fitness
function, the weight𝑊𝐴 of 𝐴𝑟𝑒𝑎𝑅𝑎𝑡𝑖𝑜 is set to 1, and the weight

𝑊𝐸 of 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 is set to 5 + �
|𝑠𝑢𝑏𝑐𝑖𝑟𝑐𝑢𝑖𝑡 |

50 �. The reasons about this
setting in fitness function are as follows. First, the larger the fitness
value is, the smaller the term (𝑊𝐸 · 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + 𝑊𝐴 · 𝐴𝑟𝑒𝑎𝑅𝑎𝑡𝑖𝑜)
is. Also, we prefer not to have the subcircuit with a larger error
rate. Hence, we enlarge the parameter𝑊𝐸 to reflect the penalty of
having a subcircuit with a larger error rate in the fitness function.
That is, we heuristically set𝑊𝐴 to 1 and𝑊𝐸 to 5 for the case that the
number of subcircuits is fewer than 50. As the number of subcircuits
increases 50, the 𝑊𝐸 adds 1 such that each subcircuit tolerates
a smaller error rate for meeting the error rate constraint of the
complete approximate circuit.
Since our approach involves randomness in some procedures,

such as the random simulation and genetic operations, the experi-
ments on each benchmark were conducted for three times and the
averaged result is reported.
We conducted two experiments. In the first experiment, we com-

pare our results against that of the state-of-the-art [18] under a 5%
error rate constraint, [18] is proposed for area reduction though.
The program of [18] was released by the authors. We used the same
set of random patterns for the error rate evaluation. The result
comparison is summarized in Table 2. Columns 1 ∼ 5 list the infor-
mation of the benchmarks including names, the numbers of PIs and
POs, the number of nodes, depths, and the number of paths with
this depth value. Columns 6 ∼ 10 list the experimental results of
our approach, including the percentages of the area reduction (AR),
depth reduction (DR), the number of paths for the depth, error rate
(E), and the required CPU time measured in second. Columns 11 ∼
14 list the corresponding results of [18]. For example, the bench-
mark c5315 has two paths with the maximum depth of 35. Our
approach approximated the circuit having 22.86% depth reduction,
14.91% area reduction, and 3.49% error rate in 110.96 seconds, while
[18] spent 35.39 seconds to obtain the approximate circuit with a
longer depth, only 6.15% area reduction, and 4.87% error rate.
According to Table 2, our approach resulted in 159% more depth

reduction on average as compared to [18]. The error rates of all
the benchmarks are within 5% in both approaches. The CPU time
overhead of our approach is only 59.09 seconds on average. This
result indicates that our genetic algorithm can achieve more depth
reduction using the designed fitness function. Moreover, the pos-
itive side effect of our approach is the area reduction. As we can
see, our approach also achieves 9% more area reduction than [18]
on average. However, for the benchmarks that do not have depth
reduction and have multiple paths for this depth, our approach can
also reduce the number of paths having this depth value.
In the second experiment, we demonstrate the effectiveness of

our work under a 10% error rate constraint by comparing the depth
reduction between our approach and the state-of-the-art [18] as
shown in Table 3. According to Table 3, our approach saves more

150

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chun-Ting Lee, Yi-Ting Li, Yung-Chih Chen, and Chun-Yao Wang

Table 2: The comparison of experimental results between our approach and the state-of-the-art [18] under a 5% error rate
constraint.

Benchmark Ours State-of-the-art [18]
Name |PI |/ |PO | |Node | Depth |Path | AR(%) DR(%) |Path | E(%) Time (s) AR(%) DR(%) E(%) Time (s)
misex 25/18 91 6 4 64.84 0.00 1 4.70 3.90 58.24 0.00 4.75 3.81
c880 60/26 323 25 1 21.67 0.00 1 4.77 22.34 17.34 0.00 5.00 10.15
chkn 29/7 344 21 1 80.36 42.86 1 4.85 9.18 80.81 38.10 4.35 10.37
c1908 33/25 412 32 1 63.11 50.00 4 4.00 22.47 60.92 28.13 3.37 9.86
c2670 233/140 694 20 1 39.48 15.00 1 4.61 42.55 22.19 0.00 3.17 18.61
simple_spi 148/144 815 10 2 23.31 10.00 1 4.73 71.90 20.86 0.00 4.02 36.95
c3540 50/22 941 42 1 9.67 16.67 1 4.96 75.94 11.58 -4.76 4.99 32.98
dalu 75/16 1067 23 1 20.52 4.35 1 4.82 73.60 33.83 21.74 4.62 44.97
cps 24/109 1244 20 1 71.38 50.00 1 4.41 81.22 68.65 20.00 3.42 47.92
c5315 178/123 1415 35 2 14.91 22.86 2 3.49 110.96 6.15 -2.86 4.87 35.39
c7552 207/108 1537 60 1 21.34 41.67 2 3.75 130.62 7.29 -1.67 4.11 38.51
alu4 14/8 1601 24 1 46.35 45.83 1 4.93 112.95 44.28 0.00 4.80 97.77
s15850 611/684 2752 34 2 30.96 32.35 1 4.97 272.62 32.34 29.41 4.84 191.94
des_area 368/192 4391 27 10 10.09 0.00 8 4.88 438.88 5.26 0.00 4.37 232.04
s38417 1664/1742 8147 25 1 22.30 0.00 1 4.94 808.07 25.56 0.00 4.18 579.59
Average 36.02 22.11 — — 151.81 33.02 8.54 — 92.72
Ratio 1.09 2.59 — — — 1 1 — —

Table 3: The comparison of experimental results between our approach and the state-of-the-art [18] under a 10% error rate
constraint.

Benchmark Ours State-of-the-art [18]
Name |PI |/ |PO | |Node | Depth |Path | AR(%) DR(%) |Path | E(%) Time (s) AR(%) DR(%) E(%) Time (s)
misex 25/18 91 6 4 73.63 33.33 1 9.05 4.67 71.43 0.00 9.45 3.13
c880 60/26 323 25 1 24.77 4.00 1 9.68 21.46 21.05 0.00 9.73 15.26
chkn 29/7 344 21 1 83.72 42.86 1 9.75 11.46 89.53 57.14 8.62 14.54
c1908 33/25 412 32 1 63.59 65.63 1 8.00 33.49 62.86 65.63 8.78 13.69
c2670 233/140 694 20 1 41.07 15.00 1 8.92 43.50 35.45 0.00 9.58 30.88
simple_spi 148/144 815 10 2 26.31 10.00 1 8.57 82.61 25.15 0.00 8.02 40.68
c3540 50/22 941 42 1 12.43 21.43 1 8.93 77.79 17.22 0.00 9.31 65.04
dalu 75/16 1067 23 1 34.58 13.04 2 8.62 66.70 46.30 21.74 9.41 80.24
cps 24/109 1244 20 1 73.31 50.00 1 9.25 67.52 69.77 20.00 8.31 52.27
c5315 178/123 1415 35 2 18.19 25.71 2 9.03 107.55 8.48 -2.86 8.29 40.74
c7552 207/108 1537 60 1 31.03 43.33 2 7.05 125.05 11.39 -1.67 9.94 48.30
alu4 14/8 1601 24 1 56.03 45.83 1 9.82 173.12 52.34 4.17 9.90 165.01
s15850 611/684 2752 34 2 37.65 32.35 1 9.34 318.62 35.32 29.41 9.81 272.11
des_area 368/192 4391 27 10 10.86 0.00 4 9.87 417.48 8.75 0.00 9.67 314.71
s38417 1664/1742 8147 25 1 24.49 24.00 6 9.58 818.41 26.70 0.00 10.00 773.20
Average 40.78 28.43 — — 157.96 38.78 12.90 — 128.65
Ratio 1.05 2.20 — — — 1 1 — —

depth than that for 5% error rate constraint, and achieves 120%more
depth reduction than [18]. The CPU time overhead is only 29.31
seconds on average as compare to the state-of-the-art. Moreover,
our approach also achieves more area reduction than [18] under
a 10% error rate constraint. On the other hand, as we can see, the
CPU time of our approach under two different error rate constraints
is similar, while the CPU time of [18] increases as the error rate
constraint relaxes. The reason behind this is that the time spent
in our approach is on performing the genetic algorithm, and its
runtime is mainly determined by the number of generations. In
addition, since we partition a circuit into subcircuits, the CPU time
is expected to be a linear growth as a circuit size increases. Thus,
our approach is more scalable than [18] for different error rate
constraints and larger circuits.

5 CONCLUSION
In this paper, we propose an evolutionary approach based on

genetic algorithm to synthesize approximate circuits with a smaller
depth and an error rate guarantee. The main ideas include replacing
nodes to constant values, partitioning the simplified circuit, and
approximating subcircuits by genetic operations. The experimental
results show that our approach achievesmuchmore depth reduction
and area reduction as compared with the state-of-the-art.

REFERENCES
[1] M. Barbareschi et al., “A Catalog-based AIG-Rewriting Approach to the Design

of Approximate Components,” IEEE Trans. Emerg. Topics Comput., 2022.
[2] J. Echavarria et al., “Probabilistic Error Propagation through Approximated

Boolean Networks,” Proc. DAC, 2020, pp. 1-6.
[3] C. M. Fiduccia et al., “A Linear-Time Heuristic for Improving Network Partitions,”

Proc. DAC, 1982, pp. 175-181.
[4] J. Han et al., “Approximate Computing: An Emerging Paradigm for Energy-

Efficient Design,” Proc. ETS, 2013, pp. 1-6.
[5] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence,” MIT
Press, 1992.

[6] S. Karakatic et al., “Optimization of Combinational Logic Circuits with Genetic
Programming,” Elektronika ir Elektrotechnika, 2013.

[7] B. W. Kernighan et al., “An Efficient Heuristic Procedure for Partitioning Graphs,”
The Bell System Technical Journal, 1970, pp. 291-307.

[8] Y. Kim et al., “An Energy Efficient Approximate Adder with Carry Skip for Error
Resilient Neuromorphic VLSI Systems,” Proc. ICCAD, 2013, pp. 130-137.

[9] P. Kulkarni et al., “Trading Accuracy for Power with an Underdesigned Multiplier
Architecture,” Proc. VLSID, 2011, pp. 346-351.

[10] K. Y. Kyaw et al., “Low-Power High-Speed Multiplier for Error-Tolerant Applica-
tion,” Proc. EDSSC, 2010, pp. 1-4.

[11] Y.-A Lai et al., “Efficient Synthesis of Approximate Threshold Logic Circuits with
an Error Rate Guarantee,” Proc. DATE, 2018, pp. 773-778.

[12] J. Liang et al., “New Metrics for the Reliability of Approximate and Probabilistic
Adders,” IEEE Trans. Comput., 2013, pp. 1760-1771.

[13] C. Liu et al., “A Low-Power, High-Performance Approximate Multiplier with
Configurable Partial Error Recovery,” Proc. DATE, 2014, pp. 1-4.

[14] C. Meng et al., “ALSRAC: Approximate Logic Synthesis by Resubstitution with
Approximate Care Set,” Proc. DAC, 2020, pp. 1-6.

[15] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Logical
Circuits,” IEEE Trans. Electron. Comput., 1963, pp. 198-223.

[16] I. Scarabottolo et al., “Partition and Propagate: an Error Derivation Algorithm
for the Design of Approximate Circuits,” Proc. DAC, 2019, pp. 1-6.

[17] S. Su et al., “Efficient Batch Statistical Error Estimation for Iterative Multi-level
Approximate Logic Synthesis,” Proc. DAC, 2018, pp. 1-6.

[18] K. S. Tam et al., “An Efficient Approximate Node Merging with an Error Rate
Guarantee,” Proc. ASP-DAC, 2021, pp. 266-271.

[19] Z. Vasicek et al., “Evolutionary Approach to Approximate Digital Circuits Design,”
IEEE Trans. Evol. Comput., 2015, pp. 432-444.

[20] S. Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for
Approximate and Quality Configurable Circuits,” Proc. DATE, 2013, pp. 1367-1372.

[21] A. Wendler et al., “A fast BDD Minimization Framework for Approximate Com-
puting,” Proc. DATE, 2020, pp. 1372-1377.

[22] S. Yang, “Logic Synthesis and Optimization Benchmarks,” Microelectronics Center
of North Carolina, Tech. Rep., 1991.

[23] N. Zhu et al., “An Enhanced Low-Power High-Speed Adder for Error-Tolerant
Application,” Proc. ISIC, 2009, pp. 69-72.

[24] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification [Online]. Available: http://www.eecs.berkeley.edu/
~alanmi/abc

[25] http://iwls.org/iwls2005/benchmarks.html

151

